
Problem 1. Mechanics on curved space

Here you will explore classical mechanics on curved spaces, in arbitrary coordinate systems.
We’ll introduce crucial geometric ideas (we won’t actually need them in this problem, but I
want to introduce them to help you recognize connections between mechanics and geometry).

Christoffel symbols are fundamental objects that tell you how basis vectors change from
one point in space to another. Letting ϵ⃗µ be the µ’th covariant basis vector, they are

∂ϵ⃗k
∂qj

=
∑
µ

Γµ
jkϵ⃗µ. (1)

In other words, the Γµ
jk tell us how the k’th basis vector change when you change qj. (Γ

looks like a tensor, but is not.) This immediately gives

Γµ
jk = ϵ⃗µ · ∂ϵ⃗k

∂qj
. (2)

Since gij encodes the dot product of basis vectors, it is unsurprising the rhs is related to a
derivative of g. After a little algebra, (go through the derivation in Sec 4.3 of A&W):

Γµ
ij =

1

2

∑
k

gµk
[
∂gik
∂qj

+
∂gjk
∂qi

− ∂gij
∂qk

]
. (3)

These are important since they not only tell us how the basis vectors vary, they also
provide a way to take the geometric derivative of a vector. For example, to determine how
a vector field changes in space, you cannot simply partially differentiate its coordinates. As
a vivid example, even a geometrically constant vector can have components that vary in
space (consider e.g. polar coordinates). So you need to extricate the geometric variation of
the vector from that coming from the mere coordinate-dependence of its components. The
Christoffel symbols let us differentiate vectors accounting for this (covariant derivatives,
which we may encounter later).

In this problem, you consider some classical mechanics in arbitrary coordinates and/or
curved space, and see the Γ provide the relevant information. Consider a particle in a
potential V (r⃗) with kinetic energy T =

∑
j ẋ

2
j , where xj are Cartesian coordinates.

(a) For an arbitrary coordinate system {qj}, where each qj is an arbitrary (time-independent,
i.e. natural coordinates) function of the {xj}, what is T? Write this in terms of the
metric gij.

(b) What are the equations of motion for this particle? Write in the form

q̈j = (stuff depending on metric, its derivatives with respect to qj’s, and V ) = 0. (4)

(Hint: They are given by the Euler-Lagrange equations for the Lagrangian L = T −V .)

(c) Rewrite the equations of motion you obtained in terms of the Christoffel symbols. The
metric should not appear.
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(d) Determine the Christoffel symbols and write out these equations of motion for a 2D
particle in polar coordinates.

(e) When the potential V vanishes, the equations of motion are the equations of geodesics,
curves that trace the shortest path between two points. In flat space, a line is the
shortest distance between two points. Let’s see this works in polar coordinates (a
perverse coordinate choice for the problem). What is the equation for a geodesic (i.e.
a line) in polar coordinates? Show that the solutions to the equations of motion give
a geodesic in this case.

(f) Now solve these equations for a particle on the surface of a unit sphere (r = 1), with
initial velocity of magnitude |v| = 1 along the equator.

A moral: modifications arising from arbitrary coordinates/curved space, automatically cap-
tured by the Lagrangian formalism, are related to quantities capturing the geometry of the
surface.

Problem 2. Two first-order 2D PDEs

(a) Consider
∂ϕ

∂x
− ∂ϕ

∂y
− (x− y)ϕ = 0. (5)

What are its characteristics? Show that ϕ = e−xyf(x+y) is a solution for f an arbitrary
function.

(b) Consider the 2D PDE (note: non-constant coefficients!):

y
∂ϕ

∂x
+ x

∂ϕ

∂y
= 0. (6)

What are its characteristics? Given initial data the function ϕ(x, 0), what is ϕ(x, y).
You may consider the region y > x > 0 if helpful. Hint: After solving the ODE along
characteristics, you may find it helpful to consider the quantity x2 − y2 to simplify.

Problem 3. A second order PDE

(a) Show that for a constant-coefficient second order PDE (Dϕ = 0, with D the short
hand for the relevant differnetial operator) where D can be factored into two distinct
factors D = P1P2 with

Pi = αi
∂

∂x
+ βi

∂

∂y
+ γi, (7)

then Dϕ = 0 has the general solution ϕ = ϕ1 + ϕ2, where P1ϕ1 = 0 and P2ϕ2 = 0.

(b) Show that the general solution to

∂2ϕ

∂x∂y
+ 2

∂2ϕ

∂y2
− ∂ϕ

∂x
− 2

∂phi

∂y
= 0 (8)

is
ϕ(x, y) = f(2x− y) + eyg(x). (9)
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