
1

ECON 4331W Summer – Assignment 1

Data visualization of GDP data

We have discussed the evolution of material living standards over time and across countries. In this exercise, you will
do independent work on data on GDP per capita, a standard measure of living standards.

You should submit a zipped-folder with your assignment. The zip folder be named FirstName_LastName_A1.zip. It
should contain

• The script with your code, “FirstName_LastName_A1.R”. Please read the content of the assignment for which
questions you need to submit code in your R script.

• A pdf file with the answers to all the exercises, “FirstName_LastName_A1.pdf.” This file should include
written answers to each question (in English, no code) and/or the graphs that the exercise is asking you to
generate.

You are responsible for naming your files appropriately, and that the code should run without errors. This includes
having in your R script the library statements that load the packages you will be using.

The exercises use R. For instructions on how to get started with R, please refer to Section 1.4-1.6 in “R for Data
Science”.

This exercise is a re-write of Chapter 3 in "R for Data Science" using other examples. If you are interested in the orignal
resource, you can find it at http://r4ds.had.co.nz/data-visualisation.html

Introduction

“The simple graph has brought more information to the data analyst’s mind than any other device.” —
John Tukey

This exercise will teach you how to visualize your data using ggplot2. R has several systems for making graphs, but
ggplot2 is one of the most elegant and most versatile. The ggplot2 package implements the grammar of graphics,
a coherent system for describing and building graphs. With ggplot2, you can do more faster by learning one
system and applying it in many places.

If you’d like to learn more about the theoretical underpinnings of ggplot2 before you start, I’d recommend reading
“The Layered Grammar of Graphics”, http://vita.had.co.nz/papers/layered-grammar.pdf.

Prerequisites

The ggplot2 package is one of the packages in “tidyverse”, a collection of packages created by Hadley Wickman to do data
science in R. To load tidyverse, write

 library(tidyverse)

That one line of code loads the core tidyverse; packages which you will use in almost every data analysis.

http://r4ds.had.co.nz/data-visualisation.html
http://vita.had.co.nz/papers/layered-grammar.pdf

2

install.packages("tidyverse") library("tidyverse")

If you run this code and get the error message ‘there is no package called “tidyverse” ’, you’ll need to first install it,
then run library() once again.

You only need to install a package once, but you need to reload it every time you start a new session.

First steps

Let’s use our first graph to answer a question: Do countries with higher income levels have a longer life expectancy
than countries with low income levels? You probably already have an answer, but try to make your answer precise.
What does the relationship between income levels and life expectancy look like? Is it positive? Negative? Linear?
Nonlinear?

The Gapminder data

You can test your answer using data from Gapminder. Gapminder is a foundation that works on making data on
development broadly accessible. Gapminder has data on GDP per capita data taken from the Penn World Table
(PWT), the data source that we talked about in lectures.

R has a custom-designed package to access the Gapminder data on GDP per capita and life expectancy. Install the
gapminder package as we did above and then load it by writing the following command:

 library("gapminder")

Loading this package gives us access to the gapminder data frame. A data frame is a rectangular collection of variables
(in the columns) and observations (in the rows). gapminder contains observations collected by the Gapminder on
GDP per capita and life expectancy in a selection of countries for different years. Print the data frame by writing:

 gapminder

A tibble: 1,704 x 6
country continent year lifeExp pop gdpPercap
 <fct> <fct> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.

... with 1,694 more rows

To learn more about gapminder, open its help page by running ?gapminder.

In our exercise, we will start by focusing on the latest set of observations from 2007. To restrict attention to these
observations, run the code

 gapminder07 <- dplyr::filter(gapminder, year == 2007)

In a later exercise, you will learn how the function “filter” works. For now, it is enough to know that the operation
above creates a data frame “gapminder07” which contains all observations from 2007. Print the data frame in the
console.

3

ggplot(data = gapminder07) +

geom_point(mapping = aes(x = gdpPercap, y = lifeExp))

Creating a ggplot

To plot gapminder, run this code to put gdpPercap on the x-axis and lifeExp on the y-axis:

80

70

60

50

40

0 10000 20000 30000 40000 50000

gdpPercap

The plot shows a positive relationship between country income level (gdpPercap) and life expectancy (lifeExp). In
other words, countries with high incomes live longer, on average. Does this confirm or refute your hypothesis about
income levels and life expectancy?

With ggplot2, you begin a plot with the function ggplot(). ggplot() creates a coordinate system that you can add
layers to. The first argument of ggplot() is the dataset to use in the graph. So ggplot(data = gapminder07) creates
an empty graph, but it’s not very interesting so I’m not going to show it here.

You complete your graph by adding one or more layers to ggplot(). The function geom_point() adds a layer of
points to your plot, which creates a scatterplot. ggplot2 comes with many geom functions that each add a different
type of layer to a plot. You can also add modifiers that change the axes, add labels, and many other useful things. The
powerful property of ggplot2 lies in this possibility of building up charts step-by-step.

Each geom function in ggplot2 takes a mapping argument. This defines how variables in your dataset are mapped
to visual properties. The mapping argument is always paired with aes(), and the x and y arguments of aes() specify
which variables to map to the x and y axes. ggplot2 looks for the mapped variable in the data argument, in this
case, gapminder07.

A graphing template

Let’s turn this code into a reusable template for making graphs with ggplot2. To make a graph, replace the bracketed
sections in the code below with a dataset, a geom function, or a collection of mappings.

lif
e
E

x
p

4

ggplot(data = <DATA>) +
<GEOM_FUNCTION1>(mapping = aes(<MAPPINGS>)) +

<GEOM_FUNCTION2>(mapping = aes(<MAPPINGS>))

ggplot(data = gapminder07) +

geom_point(mapping = aes(x = gdpPercap, y = lifeExp, color = continent))

The rest of this chapter will show you how to complete and extend this template to make different types of graphs.
We will begin with the <MAPPINGS> component.

In general, ggplot works by starting from plot and adding more components using the + sign. Thus, you could
continue the code above using

to add a new function. You will learn more about different functions you can add below.

Section 1 exercises:

1. (5 pts.) Run ggplot(data = gapminder07). What do you see and why?

2. (5 pts.) How many rows are in gapminder07? How many columns?

Aesthetic mappings

The plot above shows that people in rich countries, on average, live longer than people in poor countries. However,
it tells us very little about which countries belong to different categories. For example, where are the different
continents on this graph? We saw in the data frame that it contains information about continents. How do we
bring this information into the graph?

In ggplot2, you do this by adding an additional variable, like continent, to the two dimensional scatterplot by
mapping it to an aesthetic. An aesthetic is a visual property of the objects in your plot. Aesthetics include things
like the size, the shape, or the color of your points. You can display a point (like the one below) in different ways
by changing the values of its aesthetic properties.

Figure 1:

Since we already use the word “value” to describe data, let’s use the word “level” to describe aesthetic properties.
You can convey information about your data by mapping the aesthetics in your plot to the variables in your dataset.
For example, you can map the colors of your points to the continent variable to reveal the continent of each
country.

ggplot(data = <DATA>) +

<GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

5

ggplot(data = gapminder07) +

geom_point(mapping = aes(x = gdpPercap, y = lifeExp, size = continent))

Left
ggplot(data = gapminder07) +

geom_point(mapping = aes(x = gdpPercap, y = lifeExp, alpha = continent))

(If you prefer British English, you can use colour instead of color.)

Try it out in your code! Which continents are relatively rich and relatively poor? How does the variation look within
different continents?

In general, to map an aesthetic to a variable, associate the name of the aesthetic to the name of the variable inside
aes(). In the example above, we used “color”, but there are other aesthetics such as shape and size that we can also
map variables. Whenever we do so, ggplot2 will automatically assign a unique level of the aesthetic (here a unique
color) to each unique value of the variable, a process known as scaling. In the case of continents, every unique
continent (i.e., every unique level of the variable “continent”) is assigned to a unique color. Automatically, ggplot2
will also add a legend that explains which levels correspond to which values.

In the above example, we mapped continent to the color and aesthetics, but we could have mapped continent to
the size aesthetic in the same way. In this case, the exact size of each point would reveal its continent. We get a
warning here, because mapping an unordered variable (continent) to an ordered aesthetic (size) is not a good idea.

80

continent

70
Africa

Americas

60 Asia

Europe

50 Oceania

40

0 10000 20000 30000 40000 50000

gdpPercap

Or we could have mapped continent to the alpha aesthetic, which controls the transparency of the points, or the
shape of the points.

80

continent

70
Africa

Americas

60 Asia

Europe

50 Oceania

40

0 10000 20000 30000 40000 50000

gdpPercap

For each aesthetic, you use aes() to associate the name of the aesthetic with a variable to display. The aes() function
gathers together each of the aesthetic mappings used by a layer and passes them to the layer’s mapping argument.
When we write x and y together with color and shape, we see get useful insight about the structure of graphs. The x
and y locations of a point are themselves aesthetics, in the sense that they are visual properties (in this case,
location), that can be related to the value of variables in your datasets. In that sense, x and y are similar to shape
and color in that they are visual properties revealing something about the data.

lif
e
E

x
p

lif

e
E

x
p

6

ggplot(data = gapminder07) +

geom_point(mapping = aes(x = gdpPercap, y = lifeExp), color = "blue")

Once you map an aesthetic, ggplot2 takes care of the rest. It selects a reasonable scale to use with the aesthetic,
and it constructs a legend that explains the mapping between levels and values. For x and y aesthetics, ggplot2
does not create a legend, but it creates an axis line with tick marks and a label. The axis line acts as a legend; it
explains the mapping between locations and values.

You can also set the aesthetic properties of your geom manually. For example, we can make all of the points in our
plot blue:

80

70

60

50

40

0 10000 20000 30000 40000 50000

gdpPercap

Here, the color doesn’t convey information about a variable, but only changes the appearance of the plot. To set an
aesthetic manually, set the aesthetic by name as an argument of your geom function; i.e. it goes outside of aes().
You’ll need to pick a level that makes sense for that aesthetic:

• The name of a color as a character string.

• The size of a point in mm.

• The shape of a point as a number.

Common problems

As you start to run R code, you’re likely to run into problems. Don’t worry — it happens to everyone. I have been
writing R code for years, and every day I still write code that doesn’t work!

Start by carefully comparing the code that you’re running to the code in the book. R is extremely picky, and a
misplaced character can make all the difference. Make sure that every (is matched with a) and every " is paired with
another ". Sometimes you’ll run the code and nothing happens. Check the left-hand of your console: if it’s a +, it
means that R doesn’t think you’ve typed a complete expression and it’s waiting for you

lif
e
E

x
p

7

ggplot(data = gapminder07)

+ geom_point(mapping = aes(x = gdpPercap, y = lifeExp))

to finish it. In this case, it’s usually easy to start from scratch again by pressing ESCAPE to abort processing the current
command.

One common problem when creating ggplot2 graphics is to put the + in the wrong place: it has to come at the end of
the line, not the start. In other words, make sure you haven’t accidentally written code like this:

If you’re still stuck, try the help. You can get help about any R function by running ?function_name in the console, or
selecting the function name and pressing F1 in RStudio. Don’t worry if the help doesn’t seem that helpful - instead
skip down to the examples and look for code that matches what you’re trying to do.

If that doesn’t help, carefully read the error message. Sometimes the answer will be buried there! But when you’re
new to R, the answer might be in the error message but you don’t yet know how to understand it. Another great
tool is Google: try googling the error message, as it’s likely someone else has had the same problem, and has gotten
help online.

Section 2 exercises

1. (15 pts.) Google the geom_text command and use this to plot the graph with country names instead of points,
as below. Note that the GDP variable is very unevenly distributed across the horizontal axis. Use Google to find
out how to convert the horizontal axis to a log-scale in ggplot2 (don’t forget to appropriately rename axis
labels as well, and as always in economics, make sure to use the natural log function.)
Then, Google the geom_smooth command and use this to add a linear fitted line to this graph. After you have
drawn the plot, write ggsave(“gapminder_filename.pdf”). This command saves the latest ggplot as a pdf.
The file will go into your current working directory, which you can find by writing getwd(). Add a copy of your
final plot in your write-up. Note: this applies to all questions where you are asked to create a graph or other
type of output. Submit code in your R script for this question.

2. (5 pts.) Some countries are considerably below the line. Why do you think they are so much below? Try
checking the Wikipedia of two of these countries and give an hypothesis.

3. (5 pts.) What does the following line of code do when added to ggplot? scale_x_continuous(trans

= 'log', breaks = 1000* 2**(0:10))

4. (5 pts.) Google the “labs” command and use it to add informative x and y labels to your previous graph. Also
use the “caption” argument in the labs command to add “Source: Gapminder” to the lower right corner of the
graph. Submit code in your R script for this question.

8

ggplot(data = gapminder07) +
geom_point(mapping = aes(x = gdpPercap, y = lifeExp)) + facet_wrap(~ continent,
nrow = 2)

80

70

60

50

40

Facets

0 10000 20000 30000 40000 50000

gdpPercap

One way to add additional variables is with aesthetics. Another way, particularly useful for categorical variables
(e.g., continent, poor vs rich, rather than numerical, GDP per capita, life expectancy), is to split your plot into
facets, subplots that each display one subset of the data.

To facet your plot by a single variable, use facet_wrap(). The first argument of facet_wrap() should be a formula,
which you create with ~ followed by a variable name (here “formula” is the name of a data structure in R, not a
synonym for “equation”). The variable that you pass to facet_wrap() should be discrete.

CoCsutbaaRicCahile PuePrtoorKtRuoigrceaoalS, lRoeGpr.eeUcenGiteeFrBdmineKalNaginninAeuygdtumhdseotrmilanIrdesland
NewIsZreaaellaSItnpaFdalyrianncSAewuesCdtreanliada

Japan ISHcweolinatzgnedKrloand, China

venTaiaiwan Denmark United StatKeuswait
SingaNpoorrweay

est VBiaentnkSayamr
EaiTad

cnMudaoi
HdnSzi

teaea
rnrMnbeLeiga

goreoyvyea
islSaialovak Republic

NDiocSamrrJiiaonLCgriaACh
ndunJailoangak

uGn
r
as
eRbiBM
V
pai
euaauzlmubgilrla

izb
tr
auiuaias

Bos
AlbRaenuianUiornuMgeuxaiyco Czech Republic

ia PaonzaAmr aCnPrntoioanalaatinad Oman Bahrain

PhPiliaEprlpaSigcnauelnav
leaomyTaR

m
diBaaLrorkceroebyaniiconin

IHn
M
odG
o
nou
r
dn
oE
ue
ct
gseTcai
yosPpaet

u
lraund Iran a r mhas ai

HunSgaurydi Arabia

d and Tobago

rea, MDoenmg.oRliaep.

BMaNnageulpraiatdalensiah
oCmoemPaIaonkBnrdiodsoisatlaPivnriaincipe

MYeSyma
e
n
nem
eng,a

aRr
lep.

GaCdG
Hhaaintiadi

ETriotSrgeuoadan
aamgbabisoacIararq

GNBuigienenerian

uETratkhniinzoapniFNaiaamoibia
Kenya MDCjoaibnlioguot,i Rep.

Gabon

Uganda Equatorial Gu

CSMootae
undi

oire
BCura

Cmheardoon Botswan

ionLR,eiwDba
Na−eingBmdei.sarsRiaaeup.
mladaw'Ilivia

South Africa

i
ifmghbaanbiwstean
Afri

e
ca
ri
n
a

Republic

oezrZLraaemmsLobbetiqhoAauonnegola

Swaziland

ainea

Trinida

lif
e
E

x
p

9

ggplot(data = gapminder5207) +
geom_point(mapping = aes(x = log(gdpPercap), y = lifeExp)) +
scale_x_continuous(trans = 'log', breaks = 1000* 2**(0:10)) + facet_grid(year ~
continent)

80

70

60

50

40

0 1000020000300004000050000

80

70

60

50

40

0 10000200003000040000500000 1000020000300004000050000

gdpPercap

To facet your plot on the combination of two variables, add facet_grid() to your plot call. The first argument of
facet_grid() is also a formula. This time the formula should contain two variable names separated by a ~. To try
this, we can create the Gapminder data with two different years, 1952 and 2007:

 gapminder5207 = dplyr::filter(gapminder, year %in% c(1952, 2007))

Then you can facet on two variables to create a two-by-two graphs.

Africa

Europe

Americas

Oceania

Asia
lif

e
E

x
p

10

ggplot(data = gapminder5207) +
geom_point(mapping = aes(x = gdpPercap, y = lifeExp)) + scale_x_continuous(trans = 'log', breaks
= 1000* 2**(0:10)) + facet_grid(year ~ .)

ggplot(data = gapminder5207) +
geom_point(mapping = aes(x = gdpPercap, y = lifeExp)) + scale_x_continuous(trans = 'log', breaks

= 1000* 2**(0:10)) +
facet_grid(. ~ continent)

ggplot(data = gapminder5207) +
geom_point(mapping = aes(x = gdpPercap, y = lifeExp, color = factor(year))) + scale_x_continuous(trans =

'log', breaks = 1000* 2**(0:10)) +
facet_grid(. ~ continent)

log(gdpPercap)

If you prefer to not facet in the rows or columns dimension, use a . instead of a variable name, e.g. + facet_grid(.
~ cyl).

Section 3 exercises

1. (5 pts.) What happens if you facet on a continuous variable and why?

2. (5 pts.) Try running the code below. What does . do?

What are the advantages to using faceting instead of the colour aesthetic? What are the disadvantages? How
might the balance change if you had a larger dataset?

3. (5 pts.) Read ?facet_wrap. What does nrow do? What does ncol do? What other options control

lif
e
E

x
p

Oceania

1
9
5
2

2
0
0
7

 Africa Americas Asia Europe

80

70

60

50

40

30

80

70

60

50

40

30

11

lif
e
E

x
p

left
ggplot(data = gapminder07) +

geom_point(mapping = aes(x = gdpPercap, y = lifeExp)) + scale_x_continuous(trans =
'log', breaks = 1000* 2**(0:10))

right
ggplot(data = gapminder07) +

geom_smooth(mapping = aes(x = gdpPercap, y = lifeExp)) +
scale_x_continuous(trans = 'log', breaks = 1000* 2**(0:10))

the layout of the individual panels? Why doesn’t facet_grid() have nrow and ncol arguments?

Geometric objects

How are these two plots similar?

80

80

70

70

60 60

50

50

40

40

1000 2000 4000 8000 16000 32000

gdpPercap

1000 2000 4000 8000 16000 32000

gdpPercap

Both plots contain the same x variable, the same y variable, and both describe the same data. But the plots are not
identical. Each plot uses a different visual object to represent the data. In ggplot2 syntax, we say that they use
different geoms.

A geom is the geometrical object that a plot uses to represent data. People often describe plots by the type of geom
that the plot uses. For example, bar charts use bar geoms, line charts use line geoms, boxplots use boxplot geoms,
and so on. Scatterplots break the trend; they use the point geom. As we see above, you can use different geoms to
plot the same data. The plot on the left uses the point geom, and the plot on the right uses the smooth geom, a
smooth line fitted to the data.

To change the geom in your plot, change the geom function that you add to ggplot(). For instance, to make the plots
above, you can use this code:

Every geom function in ggplot2 takes a mapping argument. However, not every aesthetic works with every geom.
You could set the shape of a point, but you couldn’t set the “shape” of a line. On the other hand, you could set the
linetype of a line. geom_smooth() will draw a different line, with a different linetype, for each unique value of the
variable that you map to linetype.

Layering geom_point and geom_smooth allows us to have two different geoms in the same graph! If this makes
you excited, buckle up. In the next section, we will learn how to place multiple geoms in the same plot.

ggplot2 provides over 30 geoms, and extension packages provide even more (see https://ggplot2.tidyverse.
org/reference/ggplot.html for a sampling). The best way to get a comprehensive overview is the ggplot2
cheatsheet, which you can find at https://rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf. To learn
more about any single geom, use help: ?geom_smooth.

Many geoms, like geom_smooth(), use a single geometric object to display multiple rows of data. For these geoms,
you can set the group aesthetic to a categorical variable to draw multiple objects. ggplot2 will draw

lif
e
E

x
p

https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/ggplot.html
https://rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

12

ggplot(data = gapminder07, mapping = aes(x = gdpPercap, y = lifeExp)) + geom_point() +
geom_smooth()

ggplot() +
geom_point(data = gapminder07, mapping = aes(x = gdpPercap, y = lifeExp)) + geom_smooth(data =
gapminder07, mapping = aes(x = gdpPercap, y = lifeExp))

a separate object for each unique value of the grouping variable. In practice, ggplot2 will automatically group the
data for these geoms whenever you map an aesthetic to a discrete variable (as in the linetype example). It is
convenient to rely on this feature because the group aesthetic by itself does not add a legend or distinguishing
features to the geoms.

Section 4 Exercises

1. (5 pts.) What geom would you use to draw a line chart? A boxplot? A histogram? An area chart?

2. (5 pts.) What does show.legend = FALSE do? What happens if you remove it?

3. (5 pts.) What does the se argument to geom_smooth() do?

4. (5 pts.) Will these two graphs look different? Why/why not?

5. (15 pts.) Recreate the R code necessary to generate the following graphs (Edit: they are two separate graphs,
not facets). Submit code in your R script for this question.

80

70

60

50

40

1000 2000 4000 8000 16000 32000

gdpPercap

continent

Africa

Americas

Asia

Europe

Oceania

lif
e
E

x
p

13

ggplot(data = gapminder07) + geom_bar(mapping =
aes(x = continent))

80

70

60

50

40

1000 2000 4000 8000 16000 32000

gdpPercap

continent

Africa

Americas

Asia

Europe

Oceania

Statistical transformations

Next, let’s take a look at a bar chart. Bar charts seem simple, but they are interesting because they reveal
something subtle about plots. Consider a basic bar chart, as drawn with geom_bar(). The following chart displays
the total number of countries in the gapminder07 dataset, grouped by continent.

lif
e
E

x
p

14

ggplot(data = gapminder07) + stat_count(mapping =
aes(x = continent))

50

40

30

20

10

0

Africa Americas Asia Europe Oceania

continent

On the x-axis, the chart displays contient, a variable from gapminder07. On the y-axis, it displays count, but count is
not a variable in gapminder07! Where does count come from? Many graphs, like scatterplots, plot the raw values of
your dataset. Other graphs, like bar charts, calculate new values to plot:

• bar charts, histograms, and frequency polygons bin your data and then plot bin counts, the number of points
that fall in each bin.

• smoothers fit a model to your data and then plot predictions from the model.

• boxplots compute a robust summary of the distribution and then display a specially formatted box.

The algorithm used to calculate new values for a graph is called a stat, short for statistical transformation. You can
learn which stat a geom uses by inspecting the default value for the stat argument. For example,
?geom_bar shows that the default value for stat is “count”, which means that geom_bar() uses stat_count(). stat_count() is
documented on the same page as geom_bar(), and if you scroll down you can find a section called “Computed
variables”. That describes how it computes two new variables: count and prop.

You can generally use geoms and stats interchangeably. For example, you can recreate the previous plot using

stat_count() instead of geom_bar():

c
o
u
n
t

15

demo <- tribble(
~country,
"USA",

~lifeExp,
78.2,

"Australia", 80.4,
"France", 80.7,
"Albania", 76.4,
"Bangladesh", 64.1

)

ggplot(data = demo) +

geom_bar(mapping = aes(x = country, y = lifeExp), stat = "identity")

50

40

30

20

10

0

Africa Americas Asia Europe Oceania

continent

This works because every geom has a default stat; and every stat has a default geom. This means that you can
typically use geoms without worrying about the underlying statistical transformation. There are three reasons you
might need to use a stat explicitly:

1. You might want to override the default stat. In the code below, I change the stat of geom_bar() from count (the
default) to identity. This lets me map the height of the bars to the raw values of a y variable. Unfortunately when
people talk about bar charts casually, they might be referring to this type of bar chart, where the height of
the bar is already present in the data, or the previous bar chart where the height of the bar is generated by
counting rows.

c
o
u
n
t

16

ggplot(data = gapminder07) +

geom_bar(mapping = aes(x = continent, y = ..prop.., group = 1))

80

60

40

20

0

Albania Australia Bangladesh France USA

country

(Don’t worry that you haven’t seen <- or tribble() before. You might be able to guess at their meaning from
the context)

2. You might want to override the default mapping from transformed variables to aesthetics. For example, you
might want to display a bar chart of proportion, rather than count:

lif
e
E

x
p

17

ggplot(data = gapminder07) + stat_summary(
mapping = aes(x = continent, y = lifeExp), fun.ymin = min,
fun.ymax = max, fun.y =
median

)

0.3

0.2

0.1

0.0

Africa Americas Asia Europe Oceania

continent

To find the variables computed by the stat, look for the help section titled “computed variables”.

3. You might want to draw greater attention to the statistical transformation in your code. For example, you
might use stat_summary(), which summarizes the y values for each unique x value, to draw attention to the
summary that you’re computing:

Warning: `fun.y` is deprecated. Use `fun` instead.

Warning: ̀ fun.ymin` is deprecated. Use ̀ fun.min` instead. ## Warning:

`fun.ymax` is deprecated. Use `fun.max` instead.

p
ro

p

18

ggplot(data = gapminder07) +

geom_bar(mapping = aes(x = continent, y = ..prop..))

80

70

60

50

40

Africa Americas Asia Europe Oceania

continent

ggplot2 provides over 20 stats for you to use. Each stat is a function, so you can get help in the usual way,

e.g. ?stat_bin. To see a complete list of stats, try the ggplot2 cheatsheet.

Section 5 exercises

1. (5 pts.) What does geom_col() do? How is it different to geom_bar()? Google!

2. (5 pts.) In our proportion bar chart, we need to set group = 1. Why? In other words what is the problem
with this graph?

lif
e
E

x
p

